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Event Builder - Overview

Responsibilities
• Collect data from all DCM’s -- In Sub-Event Buffers (SEB’s)
• Collect event fragments -- In Assembly/Trigger Processors (ATP’s)
• Assemble fragments into complete events -- In ATP’s
• Perform Level-2 trigger calculations/rejection. -- In ATP’s
• Transmit selected events to ONCS.
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Event Builder - People/Responsibilities
Institution Name Position Responsibilities
Columbia B. Cole Faculty DC Member, overall administration of sub-system

Event builder design/documentation

Core C++ class development

ATM Evaluation/implementation

P. Steinberg Post-doc Event builder design/documentation

SEB, ATP, Controller software implementation

ONCS, Pamette integration

Debugging/testing

S. Markacs Ph.D. student Controller data structure implementation

Debugging/testing

Brookhaven S. Durrant Staff Pamette I/O and control software

Pamette (DCM-SEB PCI interface) FPGA coding

S. Lin Engineer Pamette daughter-card design, construction, testing

E. Desmond Staff ONCS-Event builder integration

Georgia State X. He Faculty Level-2 trigger support software

• Expect to add additional post-docs @ Columbia (fall/winter ‘98), Georgia
State (spring ‘99).

• Expect 2-3 additional Ph.D. students @ Columbia starting summer 1999.
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Event Builder - History
• PHENIX CDR

– Custom cross-bar switch + DSP’s.
– High level design, no details.

• PHENIX UCDR
– Same as above, slightly more detailed.

• PHENIX TAC ??
– Partitioning rears its head.
– Reality intrudes, custom solution deprecated.

• November 1996
– Event builder re-design commences.
– Meetings with RD-31 group ⇒ switch-based solution

• PHENIX TAC 1997
– Complete high-level design presented.
– ATM switch-based event builder, PC’s for SEB/ATP.
– Lack of manpower clearly evident.

• Winter 1998
– P. Steinberg & S. Durrant join effort.
– Subsequently observe tremendous progress on all

fronts.
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RD31/Atlas Demonstrator-C
• Our design relies heavily on results of studies by

– CERN RD31 (Dufey et al)
– Atlas Level-2 Demonstrator-C (LeDu et al).

• Demonstrator-C architecture very compatible with
PHENIX DAQ
– Digitization and (partial) event building after Level-1
– Highly parallel processor-based Level-2 trigger

• We have adopted many of the features of the
demonstrator-C design
– It has been evaluated in a working system.
– It has been shown to be scalable (at least to 64x64).

– Design choices consistent with our requirements.
• We have communicated/collaborated with the Saclay

group in Atlas over the last 1.5 years
– We started by “porting” their code
– We are now specializing it to our purposes

⇒ Avoid using “custom” NIC + driver
⇒ Use C++

• + there are significant differences in the details
– We will likely end up using little of the Atlas code directly.
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Trigger/Data rates @ RHIC Design 

•Large dynamic range in
–Collision rate: 25 kHz (p-p) → 100 Hz (Au+Au central)
–Event Size: 5 kbyte/event → 350 kbyte/event

•BUT ! Approximately constant data rate for all species
•PHENIX Online Performance specs

– Baseline: 12.5 KHz Lvl-1 rate, 500 Mbyte/s EvB bandwidth

–Upgrade: 25 KHz Lvl-1 rate, 2 Gbyte/s EvB bandwidth.
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Event Builder - Day 1 Requirements
Assumptions
• “Day-1” luminosity ≈ 1% of blue book

– Au-Au interaction rates:  min-bias 10 Hz, central 1 Hz.
– Expect < 1/2 of PHENIX channels read out
– But also little or no zero supression.

⇒ Estimate initial data-rate of 5 Mbyte/s.
• End year-1 run luminosity, ≈ 10% of blue book.

– Au-Au interaction rates:  min-bias 100 Hz, central 10 Hz.
– Assume modest zero-supression.

⇒ ~ 10 Mbyte/s data rate (20 Mbytes/s  w/ x2 safety).

Implications
• Modest year-1 performance requirements for event builder.
• But, year-2 requirements will be aggressive (~ 100 Mbyte/s).
⇒ For year-1 preparation, focus on robustness, integration.



August 10, 1998 Brian A. Cole Slide P6

 TAC Review 1998

Event Builder Design
Primary considerations/guidelines
• Satisfy PHENIX’s performance requirements.
• Make it as commercial as possible (manpower/cost).
• Allow easy upgrade of components.
• Make it scalable to follow luminosity/PHENIX growth.

These result in:
• Switch-based event builder (commercial, scalable).
• Over ATM (performance, commercial, scalable, upgradeable).

– Switches, NIC’s now available for PHENIX’s ultimate needs.
– Provides required flow control in hardware.

• Using PCI-based processors (commercial, upgradeable).
– Highest performance bus with significant market share.
– 64 bit, 66 Mhz will soon be a reality.

• Running Windows-NT (commercial, upgradeable).
– All ATM hardware guaranteed to work on NT
– Rational synchronization, asynchronous I/O support.

• Using Threads (performance)

• Using object-oriented code (commercial, scalable,upgradeable)
– Control structures, I/O, memory management greatly simplified
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Event Builder - Data Flow (High-level)
•Up to SEB’s, DAQ is data-

driven and parallel by channel.
– Data pushes into SEB’s.
– “Hold’s” propagate back to DCM

Event Builder
Controller

Level-1
SEB

SEB

Event Builder
Switch

ATP

Send Data

Request Data
New Event

"Acknowledge"
Drop Data

• ATP’s processing is
parallelized by event.

⇒ Switch to “pull” architecture
– Level-1 SEB notifies controller of

new events.
– Controller allocates ATP(s).

⇒ Use dynamic load leveling
⇒ Events assembled by partition.

– ATP’s pull data from SEB’s,
assemble events, perform L2 trigger
calculations.

⇒ Assembled events sent to
ONCS via ethernet.

– Events dropped from SEB under
direction of controller.

– All operations are “pipelined”.
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Virtual Circuits (VC’s)
• ATM is connection-oriented.
• VC connects source & destination.
• We will use permanent VC’s
• One PVC needed between each pair

of nodes communicating.
• Multi-cast VC’s will connect

controller to all ATP’s and SEB’s.

Event-Builder - Data Flow (low-level)
Congestion Avoidance
• Event collapses to single output

port on switch.
• Without flow control this

overloads output port bandwidth.
⇒Use VC multiplexing.

− Interleave ATM cells from
multiple events.

⇒ “Build” multiple events
simultaneously
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S E B
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Event Builder - Component Architecture
Common architecture
• Two processes per “component”

– multi-threaded real-time process
– control process w/ CORBA

interface

• Inter-process communication
through shared memory + signals
– Configuration/state changes
– monitoring (“counters” +

histograms)

• In “real-time” process:
– configuration and control

performed by “main” thread
– actual processing performed by

“worker” threads.
– Configuration/state information

maintained in component (SEB,
ATP, controller) objects.
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Event Builder - Control (fast)
• All fast control resides in controller.

– Except for “extra” Level-1 SEB code to notify controller of new event.

• Controller makes all decisions regarding the fate of an event
– Who tells SEB’s to drop event -- still undecided.

• Why all the handshaking ?
Control ler A T P

Assign Event

Event  Comple te

SEND Even t

Event  Sent

⇒ Robustness !
• If ATP “times out”, event

can be reallocated.
• If first ATP later revives we

can prevent duplication.
– Above made possible by not

dropping data in SEB’s when
fetched.

– Data only dropped in SEB
when event is successfully
sent to ONCS.
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Event Builder Control - Fast (2)
Controller data structures & partitioning
• Allow for different partitions in an “event” to be

handled by separate ATP’s.
• So there may be multiple ATP assignments per “event”

(actually crossing)
• Algorithm for “allocating” ATP’s not yet specified.

Assign T ime ATP ID
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Assignment c
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....
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# assign
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Event Builder - Control (Slow)
Component control
• “slow” control of components through control processes.
• Each component implemented as finite-state machine

– Manipulated through CORBA

• e.g. Controller
• Mainly for

– configuration
– initialization
– error recovery

Overall Event Builder control
• Controller provides all explicit control of the entire event

builder (e.g. start/stop/pause)

• Mainly through handling/lack thereof of new event messages.
– When stopping a run all events in progress will complete before

controller acknowledges state change

BootedConf igured

Initialized

Runn ing Suspended

Hal ted

Free  Run

???
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Event Builder Control - Error handling
Frame losses
• We plan to use AAL5 transport over ATM

– But w/ Winsock2 this decision is easily changed if desired later..

• AAL5 provides unreliable transport -- delivery not guaranteed.
– In principle, cell loss is possible ⇒ frames may be “lost”.

• Our design explicitly accounts for this possibility
– BUT, error handling is under our control.

• Where required, have explicit checking for time-outs
– e.g. if ATP times out in returning trigger status on an assignment, the

controller can reassign the analysis on that (crossing, partition).
– e.g. if data frame from SEB is dropped, the ATP will re-try

⇒ we always require a frame even if there’s no data so we can
distinguish between dropped frame and empty frame.

⇒ If frame is dropped on a given VC (i.e. from given SEB) then the
re-tries will be performed serially -- slows down ATP but prevents
congestion at output or ATP buffer overflow.
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Event Builder Control - Error Handling (2)
Component Failures
• Failures in SEB, Controller are necessarily “fatal”
• Failure in ATP can, in principle be detected and “handled”

⇒ ATP is simply “removed” from from controller tables
⇒ This can be done in controller if an ATP continues to time out.

• What is “failure” ? -- termination of process/thread.
• How to detect failures ?

– Control process failure will be detected through lack of monitoring data.
– Control processes will detect termination of real-time processes.
– Real-time process main thread will detect termination of worker threads.
– Worker threads will terminate on fatal exceptions.

Errors
• Serious exceptions will be reported to control thread through asynchronous

messages in shared memory.
• Normal exceptions are handled using C++ structured exception handling.
• Data errors will be recorded in data stream, counted & in some instances

reported to ONCS.
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Event Builder - ATP
Design Considerations
• Provide event parallelism

– Process/write events while
“reading” others from SEB

– Trivially take advantage of
multi-cpu platform.

• But, handle events in separate
processes.
– Prohibits possible cross-event

corruption from L2 algorithms.
• Use shared Winsock2 sockets for

– reading from SEB
– writing to ONCS

• With synchronization for exclusive
use of read/write sockets.

• Use semaphore to control # of
events running L2 simultaneously.

• Algorithm “timeouts” handled
within event process.
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ATM on Windows-NT
Winsock2
• Socket-based API extended

from BSD sockets.
• Transport independent API for

network I/O
– Provides flexibility in ATM

implementation.

• High-level interface to
– ATM quality-of-service control
– ATM “raw” AAL1/ 5 transports
– ATM signalling

• Explicit support for
– scatter-gather transfers
–  asynchronous I/O
– “pre-declaration” of receive buffers

• Uniform interface to NIC’s from
different vendors.
– Facilitates upgrades/migration.

The primary concern:
• does Winsock provided

the required performance ?
• Since it implements a

layered interface it may
have substantial overheads
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Performance tests of Winsock/NT
• Measure send/receive rates on two

different NIC’s (Fore, Efficient)
• Using 200 Mhz Pentium PC’s.
• Use Saclay timer routines

– Use CPU clock counter
– checked using NIC monitors

• Use asynchronous I/O.
• Measure vs block size:

– I/O call time
– time to completion routine
– average time to execute loop
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• Focus on sending
– ~200 µs overhead

per transfer
– Can sustain line

rate w/ >7Kbyte
blocks

– Identical results for
2 NICs
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Winsock Performance (2)
Good News
• Software can saturate and sustain OC-3 line speed.
• Basically works “out of the box”

– No fussing with PCI issues (yet)
• Results are consistent for 2 NICs+Winsock SPI’s

Bad News
• Overhead of 170 µs to every transfer.
• Asynch. I/O shows odd NT behavior for small blocks.
• Results are consistent for 2 NICs+Winsock SPI’s

Future
• Microsoft recognizes overheads in Winsock

– ATM support moved into NT kernel in NT5.0
– Supposedly the observed overheads are much reduced

• But ! We can’t test this claim because NT5 beta delayed
Our plans
• Performance is sufficient for now thru  year-2 run.
• Forge ahead but re-evaluate after NT5 measurements.
• Study Winsock on Alpha- smaller OS overheads ?
• Re-measure on 400 Mhz Pentium-II machines.
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New Winsock Measurements

Observations / conclusions
• Memory+CPU can outpace NIC on per-byte basis

– Not true for Micron 200 Mhz P1 (see previous slides).
• Non-optimized code, optimization on 200 Mhz gives 1/3

improvement in performance.
• Winsock/NT overheads are less of an issue.
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•Using DELL 400 Mhz P2
•100 Mhz memory bus
•Cache still runs at 1/2

memory bus speed.
– XION  cache runs 100 Mhz
⇒ Expect even lower over-

heads per operation

•BUT very costly now!!
– XION uses Custom Intel in-

house SRAM
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Implementation Issues - Hardware
ATM
• We have and are using a FORE ASX-1000 switch.

– 64 ports max (currently equipped with 4 - soon 8)
– Max bandwidth of 10 Gbit/s
– Max usable data bandwidth 5 Gbit/s

⇒ gets us to 500 Mbyte/s (Baseline)

• We have tested different NIC’s
– We seem to be insensitive to differences
– For now will use FORE NIC’s, cost + convenience.

PC’s
• We plan to continue using Pentium PC’s for SEB/ATP

– but Alpha prices are coming down, may continue.
• Most likely will use rack-mount chasis w/ motherboards

– passive backplanes + SBC’s investigated, but w/
recent dramatic technology changes are less viable.

• Will use Alpha for controller
• Likely dual-cpu systems for ATP’s after year-1.
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Implementation Issues - Software
Operating System
• We have chosen NT as our operating system for now.
• We will maintain choice at least through year-1.

– Essential for stable development, decision making.
• Try not to tie ourselves too heavily to NT

– No MFC, Active-X, Windows, …
– Use Winsock2 socket interface for ATM

• But, will take advantage of
– “Cleaner” NT synchronization mechanisms
– Intrinsic asynchronous I/O support

• OS-specific features are wrapped up in objects
– Localizes OS-specific code
– Re-write classes for different OS if ever required.

Future alternatives
• Linux most likely

– Not thrilled w/ POSIX synchronization, AI/O.
• Lynx-OS also possible but expensive.
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Implementation Issues- Software (2)
Use of C++
• Many people express concerns regarding speed of C++

– Clearly not a concern for control/monitoring
• But we’re also using C++ for “real-time” structures

– Such concerns are irrelevant for year-1, probably 2.
– They may also be simply wrong (or un-informed)

⇒ see preliminary benchmarks by P. Steinberg

• Our approach:
– Be reasonable, but use C++ features (e.g.

polymorhpism) where appropriate.
– Use templates where possible.
– Reduce on-the-fly creation/destruction of objects.

• Libraries/STL
– Currently we are using SGI STL implementation

⇒ even on NT -- Visual C++ templates less stable

– We are not currently using any commercial libraries.
⇒ We are considering using RougeWave STL & threads++
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Progress/Future Schedule
Current Status
• We have nearly complete implementation of SEB code.

⇒ Also yields much infrastructure needed for controller/ATP.
⇒ This includes handling of PRDF, frame assembly.

– Integration w/ ONCS not quite complete.
– 1st Chain test of DCM, Pamette, SEB in 1-2 weeks.
– Incorporation of ATM messaging + Asynch I/O RSN.

• Currently developing Controller code
– Have implementation of main control structures.
– Incorporating messaging with input/output queues.

• Goal is to have standalone 2x2 event builder in Sept.
– Limited monitoring
– Error handling will not be complete.
– No real trigger algorithm support.
– Extremely simple Controller “policy” algorithms.

• From there:
– Flesh out exception handling & error reporting everywhere.
– Implement real controller policy algorithms  (e.g. load-leveling).
– Flesh out trigger algorithm support software.
– Implement object “pools” to avoid new, delete
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Schedule - Engineering Run
Hardware configuration
• 2 SEB’s w/ single Pamette (400 Mhz Pentium)

– likely will be first 2 rack-mount systems
• 2 ATP’s (400 Mhz pentium) - in hand
• 1 Controller (533 Mhz Alpha) - in hand
• ASX-1000 w/ 8 ports - in hand
• Terminal switch - Yet to be purchased (Raritan)

Software
• “Version 1” of Event Builder code

– Fully functional SEB interface.
– All components functional w/ full control interfaces
– At least minimal monitoring (counters, buffer depths)
– Functional connection to ONCS data logging.

• Goal is to have this in November 1998.
– Even if we “miss” we’ll be ready by engineering run.


